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Abstract
Background Females represent approximately 70% of the Alzheimer’s disease (AD) cases and the literature has 
proposed a connection between the decreased estrogen levels during menopause and an increased AD risk. Previous 
investigations have predominantly focused on assessing how hormone therapy (HT) affects the likelihood of AD 
development and cognitive deterioration. However, as the research framework has shifted toward a biomarker-
defined AD and alterations in specific biomarkers could take place years before cognitive decline becomes 
discernible, it is crucial to examine how HT influences AD biomarkers. The main goal of this study was to evaluate 
the impact of HT on AD biomarker-informed pathophysiology in both cognitively unimpaired (CU) and cognitively 
impaired (CI) post-menopausal females across the aging and AD spectrum.

Methods This cross-sectional study included post-menopausal females without HT history (HT-) and with HT (HT+) 
at the time of PET imaging assessment from two cohorts: the Translational Biomarkers in Aging and Dementia (TRIAD) 
cohort, and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Participants underwent magnetic resonance 
imaging (MRI), positron emission tomography (PET) and biofluid collection. Voxel-based t-tests were performed to 
assess the differences in amyloid-β (Aβ) and tau neurofibrillary tangles (NFTs) loads between HT- and HT + females. 
Linear regression models with interaction terms were also conducted to examine the interactive effects of HT and 
Aβ-PET on regional tau-PET.

Results HT + females demonstrated significantly lower tau-PET standardized uptake value ratio (SUVR) in Braak I-II 
ROIs (P < 0.05, Hedges’ g = 0.73), Braak III-IV ROIs (P < 0.0001, Hedges’ g = 0.74) and Braak V-VI ROIs (P < 0.0001, Hedges’ 
g = 0.69) compared to HT- females. HT + females also showed significantly lower CSF p-tau181 (P < 0.001) and plasma 
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Introduction
Alzheimer’s disease (AD) is the most common form of 
dementia and is characterized by the accumulation of two 
pathological protein aggregates: amyloid-β (Aβ) plaques 
and tau neurofibrillary tangles (NFTs) [1]. Female makes 
up almost two-thirds of the AD population worldwide [2, 
3]. The higher age-standardized dementia prevalence in 
females (female-to-male ratio = 1.69 (1.64–1.73)) shown 
in the recent 2022 Global Burden of Disease (GBD) 
report provided evidence that higher incident cases in 
females cannot simply be explained by greater life expec-
tancy [4]. Findings from preclinical and clinical studies 
also supported the sex-specific biological mechanisms in 
diverging AD risk as an important adjunct explanation to 
the epidemiologic perspective. More specifically, the neu-
rophysiological impact of estrogen decline is emerging as 
the main aetiological basis for the higher prevalence of 
AD in females [5–7]. Evidence from positron emission 
tomography (PET) imaging studies demonstrated that 
peri/post-menopausal females exhibit increased brain 
Aβ deposition as compared to premenopausal females 
and age-matched males [8, 9]. Results from animal stud-
ies discovered that estrogen receptor α co-localized with 
NFTs and estradiol seemed to show a protective effect 
against tau hyperphosphorylation, particularly among 
female rats [10]. A recent imaging study suggested that 
earlier age at menopause was associated with increased 
tau vulnerability especially when neocortical Aβ was 
elevated [11]. In line with this, surgically-induced meno-
pause was also implicated to be associated with more 
prominent AD neuropathology [12–14].

In recent decades, multiple research groups started to 
investigate the effects of administrating hormone therapy 
(HT) as a preventive strategy against AD risk and long-
term change in cognitive function in perimenopausal and 
postmenopausal females, yet the results have been incon-
clusive [15–18]. Early meta-analyses of observational 
studies on the relationship between AD and HT use/his-
tory suggested significant reductions between 29% and 
44% in the risk of AD for women who used HT in their 
lifetime versus those who had never used HT [15, 19–22]. 
These earlier findings, however, were called into question 
after the publication of data from the Women’s Health 
Initiative Memory Study (WHIMS), which revealed 
that HT was not only not beneficial for the prevention 
of dementia but may also increase the risk for cognitive 

decline and dementia in women over age 65 [23–26]. 
Findings from the ancillary Cognitive and Affective Study 
(KEEPS-Cog) of the Kronos Early Estrogen Prevention 
Study (KEEPS) also showed no alteration in cognition 
in recently postmenopausal women with menopausal 
HT (MHT, administered proximal to the menopausal 
transition) [27]. Another large, randomized control trial, 
the Early versus Late Intervention Trial with Estradiol 
(ELITE) trials, utilizes oral estradiol delivered for up to 
5 years to participants whose menopause transition was 
remote (10 years beyond menopause) or recent, to elu-
cidate appropriate timing or the window of opportunity 
to initiate HT [28]. Results from a recent meta-analysis 
examining 6 random controlled trials and 45 observa-
tional reports suggest that estrogen therapy initiated 
during the critical window of the menopause transition 
may reduce the risk of developing AD [19]. Overall, the 
current consensus is that HT administered well past the 
menopausal transition will not prevent AD and may even 
elevate risk, especially if the individual is already exhibit-
ing preclinical or subclinical neurodegenerative changes 
or metabolic dysregulation. While MHT might hold 
potential as an AD prevention strategy, it remains to be 
determined precisely what subgroups of women could 
benefit from HT and for whom HT is contraindicated.

Previous investigations have predominantly concen-
trated on assessing how HT affects the likelihood of AD 
development and cognitive deterioration, neglecting to 
explore the impacts of HT on AD-related biomarkers. 
As the research framework has shifted toward a bio-
marker-defined AD in living persons [29], and alterations 
in specific AD biomarkers could take place years before 
cognitive decline becomes discernible, it is crucial to 
examine how HT influences the levels of AD biomarkers. 
Therefore, the main goal of this study was to evaluate the 
impact of estrogen-based HT on AD biomarker-informed 
pathophysiology to elucidate the crosslinks between HT, 
Aβ and tau in post-menopausal females.

Materials and methods
Participants
Translational biomarkers in aging and dementia (TRIAD)
TRIAD is an ongoing longitudinal study launched in 
2017 at the McGill Centre for Studies in Aging. In this 
study, we assessed a total of 201 female participants 
from the TRIAD cohort including 178 post-menopausal 

p-tau181 (P < 0.0001) concentrations. Additionally, results from multivariate linear regression models indicated that HT 
interacts with cortical Aβ and is associated with lower regional NFT load.

Conclusions Overall, findings from this observational study suggest that HT is associated with lower tau 
neuroimaging and fluid biomarkers in postmenopausal females. Due to the close link between tau and cognition, this 
study highlights the need for large randomized controlled trials designed to systemically study the influences of HT 
on AD biomarkers and disease progression.
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HT non-users (HT-) and 23 post-menopausal HT users 
(HT+). All participants underwent structural MRI, 
Aβ-PET with [18F]AZD4694, and tau-PET with [18F]
MK6240. Cerebrospinal fluid (CSF) and plasma were 
also collected for some participants (CSF: n = 55 and 
plasma: n = 107). All participants additionally underwent 
clinical and cognitive assessments, including the Mini-
Mental State Examination (MMSE), Montreal Cognitive 
Assessment (MoCA), Logical Memory Test, Rey Audi-
tory Verbal Learning Test (RAVLT) and the Clinical 
Dementia Rating (CDR). Objective cognitive impairment 
is defined as deficits in one or more cognitive domains. 
On the other hand, subjective cognitive impairment is 
the self-reported experience of worsening or more fre-
quent confusion or memory loss. In this study, cogni-
tively unimpaired (CU) individuals had a CDR score of 
0 and MMSE ≥ 27. Subjects with mild cognitive impair-
ment (MCI) had a CDR score of 0.5 and essentially nor-
mal activities of daily living with or without subjective 
cognitive impairment. Patients with mild-to-moderate 
sporadic AD dementia met the National Institute on 
Aging and Alzheimer’s Association criteria for probable 
AD as determined by a physician and had a CDR score 
between 0.5 and 2. We excluded participants with inad-
equately treated systemic conditions, active substance 
abuse, recent head trauma, recent major surgery or pre-
senting with MRI/PET safety contraindications. The 
study was approved by the Montreal Neurological Insti-
tute PET Working Committee and the Douglas Mental 
Health University Institute Research Ethics Board. Writ-
ten informed consent was obtained from all participants.

Alzheimer’s disease neuroimaging initiative (ADNI)
In this study, to enhance the reproducibility of our find-
ings, we also incorporated participants from the ADNI 
cohort. ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. 
Weiner, MD. The primary goal of ADNI has been to 
test whether serial MRI, PET, other biological markers, 
and clinical and neuropsychological assessment can be 
combined to measure the progression of MCI and early 
Alzheimer’s disease. Analyses were conducted inde-
pendently in two sub-cohorts: ADNI imaging (n = 343, 
for PET imaging analysis) and ADNI fluid (n = 396, for 
fluid biomarker analysis). The reason for having two 
sub-cohorts in this study was the fact that only ADNI3 
participants underwent tau-PET. By having the two sub-
cohort study designs, we could maximize the enrollment 
of HT + subjects. All participants in the ADNI imaging 
sub-cohort underwent structural MRI, Aβ-PET with [18F]
florbetapir, and tau-PET with [18F]flortaucipir. All par-
ticipants in the ADNI fluid sub-cohort had Aβ-PET with 
[18F]florbetapir, and CSF and plasma p-tau measures at 
the same visit. Data used in the preparation of this article 

were obtained from the ADNI database. The ADNI study 
was approved by the institutional review boards of all the 
participating institutions. Informed written consent was 
obtained from all participants at each site. Full informa-
tion regarding the inclusion and exclusion criteria in 
ADNI can be accessed at http://adni.loni.usc.edu/. There 
was no attempt to match cases between the ADNI and 
TRIAD cohorts.

Hormone therapy assignment
During each visit, participants were asked to provide a list 
of their current medication prescribed by their doctor(s) 
specifying information including medication name, dos-
age, frequency, reason for taking the medication and start 
date (end date if applicable). The investigators examined 
the lists to assign hormone therapy status (HT- or HT+) 
based on the FDA-approved HT medication (https://
www.fda.gov/media/119387/download?attachment). 
HT + females are defined as individuals who were cur-
rent or previous users of estrogen alone or combination 
(estrogen plus progestin) HT, while HT- females are 
those with no record of HT use. Information about ini-
tiation age of the HT, route of administration, type and 
dosage of medications were recorded in both ADNI and 
TRIAD cohorts, but not examined in this study due to 
the small sample size. Female individuals with oophorec-
tomy were excluded from this study.

Brain imaging methodology
TRIAD
[18F]AZD4694 PET and [18F]MK6240 PET scans in the 
TRIAD cohort were acquired with a brain-dedicated Sie-
mens High-Resolution Research Tomograph (HRRT). 
[18F]AZD4694 images were acquired at 40–70 min after 
the intravenous bolus injection of the tracer and recon-
structed with an ordered subset expectation maximi-
zation (OSEM) algorithm on a four-dimensional (4D) 
volume with 3 frames (3 × 600  s). [18F]MK-6240 images 
were acquired at 90–110  min after the intravenous 
bolus injection of the tracer and reconstructed using the 
same OSEM algorithm on a 4D volume with 4 frames 
(4 × 300 s) [30]. At the end of each PET emission acqui-
sition, a 6-min transmission scan with a rotating 137Cs 
point source was performed for attenuation correc-
tion. PET images were also corrected for motion, dead 
time, decay and scattered and random coincidences. 
Briefly, PET images were linearly registered to the native 
T1-weighted MRI and MRIs were linearly and nonlin-
early registered to the ADNI standardized space. Then, 
PET images in the T1 space were brought to the ADNI 
standardized space using transformations from native 
MRI to the ADNI standardized space. PET images were 
subsequently spatially smoothed to an 8-mm full-width 
at half maximum resolution. [18F]AZD4694 standardized 

http://adni.loni.usc.edu/
https://www.fda.gov/media/119387/download?attachment
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uptake value ratio (SUVR) used the whole cerebel-
lum gray matter as the reference region whereas [18F]
MK6240 SUVRs used the inferior cerebellar gray mat-
ter. Global [18F]AZD4694 SUVR value was estimated 
for each participant by averaging the SUVR from the 
precuneus, prefrontal, orbitofrontal, parietal, temporal, 
anterior and posterior cingulate cortices. Regional [18F]
MK6240 SUVRs were generated for meta-ROIs includ-
ing the entorhinal, amygdala, parahippocampal, fusiform, 
inferior temporal and medial temporal regions. Aβ posi-
tivity was assigned based on published cut-offs of [18F]
AZD4694 neocortical SUVR (1.55 SUVR) [31].

ADNI
Full information regarding the acquisition and pre-pro-
cessing of PET data in ADNI is provided at http://adni.
loni.usc.edu/data-samples/pet/. Pre-processed PET 
images downloaded from ADNI underwent spatial nor-
malization to the ADNI standardized space using the 
transformations of PET native to MRI native space and 
MRI native to the ADNI space. [18F]florbetapir SUVR 
and [18F]flortaucipir SUVR were generated using the 
whole cerebellar grey matter and the inferior cerebellar 
grey matter as reference region, respectively. A global 
[18F]florbetapir SUVR value was estimated for each par-
ticipant by averaging the SUVR from the precuneus, 
prefrontal, orbitofrontal, parietal, temporal, anterior and 
posterior cingulate cortices. Regional [18F]flortaucipir 
SUVRs were generated for each Braak staging ROI as well 
as meta ROIs.

Fluid biomarker measurements
CSF and plasma collection in the TRIAD cohort followed 
procedures previously described [32]. All measures were 
quantified at the University of Gothenburg (Gothen-
burg, Sweden), by scientists blinded to the clinical and 
biomarker data. CSF concentrations of p-tau181 and 
p-tau217 were quantified using a custom Single molecular 
array (Simoa) assay as described previously [33]. Plasma 
p-tau181 was measured by in-house Simoa methods on 
an HD-X Analyzer (Quanterix, Billerica, MA, USA) [34]. 
Plasma p-tau217 was measured on the Simoa machine 
using Janssen R&D assay [35]. Detailed information is 
described in Supplementary Method.

Neuroimaging voxel-based analyses
Neuroimaging voxel-based analyses were performed 
using the VoxelStats toolbox (https://github.com/sulan-
tha2006/VoxelStats) in MATLAB R2015a (The Math-
Works, Natick, MA, USA, http://www.mathworks.com). 
VoxelStats is a MATLAB-based analytical framework 
that allows for the execution of multimodal voxelwise 
neuroimaging analyses. Welch’s t-test was performed at 
the voxel level to assess the differences in Aβ and NFT 

loads between HT- and HT + females. BrainNet Viewer 
[36] was used for visualization of the results from the 
neuroimaging analyses.

Statistical analysis
Statistical analyses were performed in Python 3.9.12 and 
MATLAB. Demographic (age, years of education) and 
clinical data (MMSE, concentration of plasma and CSF 
biomarkers, PET SUVRs) were compared between HT- 
and HT + females using independent t-tests or Welch’s 
t-tests (accounting for unequal sample sizes and unequal 
variances) with Bonferroni correction, as appropriate. 
Categorical variables (APOEε4 carriage status, clini-
cal diagnosis) were compared using the χ2 test. CU and 
CI (cognitively impaired,  including both MCI and AD 
dementia diagnosis) individuals are previously defined 
in the Participant section. Linear regression models were 
fitted with an interaction term to estimate the extent to 
which HT use moderated the association between corti-
cal Aβ load and regional tau aggregation. The regression 
models were adjusted for age, education, APOE carriage 
status and clinical diagnosis (CU or CI) to account for 
their potential influence.

Results
Participants
Demographic characteristics of the study populations 
are displayed in Table 1. Of 201 female individuals in the 
TRIAD cohort, 23 were HT+ (11.4%) and 178 were HT- 
(88.6%). In the ADNI cohort (ADNI Imaging: n = 343 and 
ADNI Fluid: n = 396), 75 were HT+ (10.1%) and 664 were 
HT- (89.9%). Briefly, HT + females showed lower regional 
tau-PET and lower CSF and plasma p-tau concentrations. 
They performed better in the MMSE test compared to 
HT- individuals. No significant difference was reported 
regarding the educational attainment and APOE geno-
types between HT- and HT + groups.

Hormone therapy mitigates tangle aggregation and tau 
phosphorylation in post-menopausal females
Results from independent t-tests showed that 
HT + females demonstrated lower regional tau-PET 
SUVR (Fig.  1). In the TRIAD cohort, the HT + group 
presented significantly lower tau-PET SUVR in Braak 
I-II ROIs (P < 0.05, Hedges’ g = 0.73), Braak III-IV ROIs 
(P < 0.0001, Hedges’ g = 0.74) and Braak V-VI ROIs 
(P < 0.0001, Hedges’ g = 0.69). We found consistent results 
in the ADNI cohort where HT + females showed lower 
tau-PET SUVR in Braak III-IV ROIs (P < 0.01, Hedges’ 
g = 0.45) and Braak V-VI ROIs (P < 0.01, Hedges’ g = 0.37). 
Additionally, results from the ADNI Fluid cohort sug-
gested that HT + females also had significantly lower 
CSF p-tau181 (P < 0.001) and plasma p-tau181 (P < 0.0001) 
concentrations.

http://adni.loni.usc.edu/data-samples/pet/
http://adni.loni.usc.edu/data-samples/pet/
https://github.com/sulantha2006/VoxelStats
https://github.com/sulantha2006/VoxelStats
http://www.mathworks.com


Page 5 of 13Wang et al. Alzheimer's Research & Therapy          (2024) 16:162 

Table 1 Demographics of the study populations
TRIAD cohort ADNI imaging cohort ADNI fluid cohort
HT- HT+ HT- HT+ HT- HT+

No. 178 23 315 28 349 47
Age, mean (SD), y 71.4 (6.7) 73.1 (5.8) 72.8 (8.6) 71.5 (7.9) 73.0 (7.4) 70.5 (6.4) *
Education, mean (SD), y 14.8 (3.6) 15 (3.2) 16.1 (2.4) 16.5 (2.2) 15.6 (2.6) 16.3 (2.5)
Clinical Diagnosis, CU: CI 97: 81 16: 7 187: 128 16: 12 123: 226 23: 24
APOE ε4 carrier (%) 33.7% 27.3% 41.6% 40% 46.4% 34%
MMSE score, mean (SD) 26.9 (4.9) 29.2 (1.0) * 27.8 (3.6) 28.1 (3.3) 27.3 (3.2) 28.7 (1.6) *
RAVLT score †

Recognition, mean (SD) 10.0 (6.9) 12.1 (3.4) *
Immediate, mean (SD) 44.2 (12.3) 43.9 (12.7) 39.2 (13.2) 47.8 (11.8) *
Learning, mean (SD) 5.7 (2.7) 5.5 (2.6) 4.7 (2.9) 6.0 (2.8) *
Forgetting, mean (SD) 3.9 (3.0) 4.0 (3.2) 4.5 (2.7) 3.8 (2.7)
Alzheimer’s disease biomarkers
Amyloid-PET Neocortical SUVR 1.87 (0.67) 1.77 (0.56) 1.19 (0.24) 1.12 (0.17) 1.24 (0.24) 1.16 (0.23) *
Tau-PET imaging biomarkers Tau fluid biomarkers
Braak I-II SUVR 1.24 (0.54) 1.05 (0.26) * 1.22 (0.15) 1.24 (0.15) CSF p-tau181

Braak III-IV SUVR 1.35 (0.88) 0.98 (0.19) * 1.17 (0.17) 1.14 (0.11) * 29.09 (16.3) 22.92 (10.2) *
Braak V-VI SUVR 1.25 (0.79) 0.91 (0.13) * 1.05 (0.14) 1.01 (0.11) * Plasma p-tau181

META-ROI SUVR 1.39 (0.94) 0.99 (0.26) * 1.22 (0.20) 1.18 (0.13) * 18.59 (10.1) 13.44 (6.9) *
Hormone Therapy Information
Status (Past: New: Current) †† 0: 1: 22 0: 7: 21 3: 6: 38
Type (Estrogen only: Combination) 14: 9 23: 5 42: 5
Starting age, mean (SD), y 55.4 (11.1) 60.6 (12.6) 59.9 (11.2)
Duration, mean (SD), y 16.8 (11.7) 10.1 (9.6) 10.5 (10.8)
Variables including age, education level, MMSE score, AD neuroimaging and fluid biomarker levels were assessed using independent t-tests, or Welch’s t-tests (when 
the group variance reported significantly different), to evaluate if significant differences exist between HT- and HT + groups. Categorical variables including APOEε4 
carriage status and clinical diagnosis were compared using the χ2 test. Overall, we reported no significant difference between HT- and HT + regarding educational 
attainment, APOEε4 carriage status and clinical diagnosis. HT + females in the TRIAD cohort and the ADNI Imaging cohort showed lower regional tau-PET SUVRs 
compared to HT- females. HT + females in the ADNI fluid cohort demonstrated lower concentrations of p-tau in both CSF and plasma
*Significantly different
† Different summary scores are derived from raw RAVLT scores. These include Recognition (the sum of recognition minus false positives), Immediate (the sum of 
scores from 5 first trials, i.e., Trials 1 to 5), Learning (the score of Trial 5 minus the score of Trial 1) and Forgetting (the score of Trial 5 minus the score of the delayed 
recall)
†† HT status: “New” indicated an individual using HT for less than a year at the time of the PET imaging assessment

Abbreviation: HT: hormone therapy; CU: cognitively unimpaired; CI: cognitively impaired; MMSE: Mini-mental state examination; RAVLT: Rey Auditory Verbal Learning 
Test; SUVR: standardized uptake value ratio

Fig. 1 Hormone therapy mitigates NFT load and p-tau concentrations in post-menopausal females. HT+ females demonstrated significantly lower tau-
PET SUVRs in Braak I-II ROIs (TRIAD: P < 0.05, Hedges’ g = 0.73), Braak III-IV ROIs (TRIAD: P < 0.0001, Hedges’ g = 0.74; ADNI: P < 0.01, Hedges’ g = 0.45) and 
Braak V-VI ROIs (TRIAD: P < 0.0001, Hedges’ g = 0.69; ADNI: P < 0.01, Hedges’ g = 0.37) compared to HT- females. HT + females also showed significantly lower 
CSF p-tau181 (P < 0.001) and plasma p-tau181 (P < 0.0001) concentrations
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HT + post-menopausal females presented lower tau tangle 
load in the brain
We then compared the NFT load in the brains of HT- and 
HT + post-menopausal females. Welch’s t-test was per-
formed at the voxel level, and we found that HT + females 
presented significantly less NFT load in the brain as 
compared to HT- females (Fig.  2A). Among cognitively 
impaired (CI) subjects, HT + females again demon-
strated lower tau-PET SUVR compared to HT- females 
(Fig.  2B). Additionally, our results indicated that APOE 
modulates the effect of HT on regional Aβ-PET and tau-
PET. In post-menopausal HT non-users, APOEε4 carri-
ers presented with significantly higher Aβ and NFT load 
compared to APOEε4 non-carriers. In contrast, post-
menopausal females who use HT showed similar levels 
of Aβ-PET and tau-PET, regardless of their APOE geno-
types (Fig. 2C and Supplementary Fig. 1).

Hormone therapy interacts with cortical Aβ and is 
associated with lower regional NFT load
We next performed voxel-based Welch’s t-tests to com-
pare the average Aβ and NFT load in participants with 
prominent Aβ pathology (Aβ + subjects). We observed 
that HT + females presented significantly lower Aβ-PET 
SUVR in temporal and frontal regions; they also had 
lower tau-PET SUVR in multiple brain areas (Fig.  3A). 
Importantly, with similar Aβ-PET SUVRs, HT + females 
displayed lower tau-PET SUVR in Braak ROIs and meta-
ROIs (Fig.  3B and Supplementary Fig.  2). Additionally, 
HT + females also presented lower p-tau concentrations 
compared to HT- females (Supplementary Fig.  3). To 
elucidate the cross-links between HT, Aβ and tau, lin-
ear regression models with interaction terms were con-
ducted. The findings indicated that HT interacted with 
Aβ and was associated with lower regional tau-PET 
(Table  2). The results remained significant after cor-
recting for age, education, APOE genotypes and clinical 
diagnosis.

Discussion
The higher risk of AD in females highlights the need for 
sex-specific investigations into the pathogenesis of AD. 
The decline in estrogen levels during menopause has 
been indicated as a contributing factor to the pathological 
progression of AD in females. Despite extensive research 
efforts to investigate the impact of HT on AD risk and 
long-term cognitive change, results of administrating 
HT in perimenopausal and postmenopausal females as 
a preventive strategy against AD have been inconclusive 
[15–18]. Previous investigations have predominantly 
focused on assessing how HT affects the likelihood of 
AD development and cognitive deterioration, neglecting 
to explore the influence of HT on AD-related biomark-
ers. As the research framework has shifted toward a 

biomarker-defined AD [29], it is crucial to examine how 
HT influences the levels of AD biomarkers. In this pres-
ent observational study, we evaluated the relationships 
between HT use and AD biomarker-informed patho-
physiology to understand the crosslinks between HT and 
two AD primary pathological hallmarks, Aβ and tau. We 
reported that HT is associated with lower tau neuroim-
aging and fluid biomarkers in post-menopausal females. 
Taken together, findings from this study highlight the 
need for large randomized controlled trials designed to 
comprehensively study the influence of HT on AD bio-
markers and progression in middle-aged females.

Recent findings have identified APOE genotype and age 
of HT initiation as potential modulators of the effect of 
HT intervention [11, 37, 38]. APOEε4 has been known 
to be the most important genetic risk factor for spo-
radic AD. A greater penetrance of an APOEε4 genotype 
in females was suggested to be an important contributor 
to the higher AD rates in women [39]. Indeed, multiple 
studies have reported a sex-imposed deleterious effect 
of APOEε4. Female APOEε4 carriers were found to have 
worse episodic memory [40], lower default-mode net-
work activity [41], decreased hippocampal connectivity 
[42] and increased hypometabolism and atrophy [43] in 
comparison to age-matched male APOEε4 carriers. One 
meta-analysis showed a stronger association between 
APOEε4 and higher CSF tau burden among women com-
pared with men, and this association was only observed 
in individuals with evident Aβ pathology [44]. Another 
study also demonstrated that in cognitively normal older 
adults, females had more tau tangles in the entorhinal 
cortex than males, and this sex difference was slightly 
more pronounced in APOEε4 carriers[45]. In line with 
this, our previous study also found that female APOEε4 
carriers presented significantly higher NFT burden in 
early tau deposition regions including the hippocampus, 
entorhinal and parahippocampal cortices compared to 
male APOEε4 carriers [46]. Interestingly, the estrogen 
receptor α appeared to be responsible for the estrogen-
mediated upregulation of APOE expression [47], indicat-
ing that estrogen and APOE might act synergistically in 
postmenopausal females. Although the available evidence 
remained inconclusive regarding the role APOEε4 plays 
in modulating the effect of HT on AD-related patholo-
gies, results from voxel-based analyses in this study 
revealed that among the post-menopausal HT + females, 
APOEε4 carriers showed similar level of Aβ-PET and 
tau-PET as APOEε4 non-carriers. In contrast, in the 
post-menopausal HT- group, APOEε4 carriers presented 
with significantly higher Aβ and NFT load compared to 
APOEε4 non-carriers (Fig. 2C and Supplementary Fig. 1). 
Our findings are in agreement with two other studies that 
reported APOEε4 females received favourable outcomes 
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Fig. 2 Hormone therapy use is linked to lower regional tau load in post-menopausal females. (A) Results from voxel-based Welch’s t-test showed that 
HT + females presented significantly lower tau-PET SUVR in multiple brain regions as demonstrated in the t-statistical map. (B) Among cognitively im-
paired subjects, HT + females also demonstrated significantly less NFT load compared to HT- females. (C) In post-menopausal HT non-users, APOEε4 car-
riers presented with significantly higher NFT load compared to APOEε4 non-carriers. In contrast, post-menopausal females who use HT showed similar 
levels of tau-PET signals, regardless of their APOE genotypes. Images represent voxel-based t-statistical parametric maps overlaid on the structural MRI 
reference template. Results were corrected for multiple comparisons using the FDR cluster threshold of P < 0.001
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(Aβ pathway biomarker level [48], improved cognition 
and larger brain volumes [37]) from HT.

Besides the APOE genotype, the timing of HT initia-
tion has also been indicated as a mediator of the cog-
nitive impact of HT use, leading to the critical window 
hypothesis [49, 50]. This hypothesis suggests that the 

neuroprotective effects of HT are only evident when it 
is introduced during the menopausal transition or early 
post-menopausal period, where gradual estrogen decline 
increases the brain’s liability to AD-related pathologies. 
In 2004, WHIMS published results suggesting the use 
of estrogen plus progestin HT to prevent the incidence 

Fig. 3 Hormone therapy interacts with cortical Aβ and is associated with lower regional NFT load. (A) We assessed how HT affected the average Aβ and 
NFT load in participants with prominent Aβ pathology (Aβ+ subjects). Voxel-based Welch’s t-test showed that HT + females presented significantly lower 
Aβ-PET SUVR in temporal and frontal regions and had significantly lower tau-PET SUVR in multiple brain regions compared to HT- females. (B) Linear 
regression models showed that with similar Aβ load, HT + females demonstrated less NFT aggregation compared to HT- females, suggesting HT use 
interacted with cortical Aβ and mitigated regional NFT load
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of MCI and dementia is not recommended in women 
65 years of age or older [23]. WHIMS answered criti-
cally important questions about whether HT can protect 
against dementia in elderly women who start HT years 
after menopause. However, the critical window hypoth-
esis has prompted us to question the generalisability of 
WHIMS to perimenopausal females experiencing meno-
pausal symptoms, for whom HT is considered appropri-
ate shortly after menopause. Observational studies that 
examined the timing of initiation of HT in relation to 
AD risk [43–45] and cognitive test performance [46–48] 
both support the critical window hypothesis. Some ran-
domized clinical trials of estrogen therapy in younger 
women also find support for the hypothesis [49, 50]. 

However, this notion is challenged by recent results from 
a Danish nationwide nested case-control study, which 
indicated a contrary trend. In that study, the use of HT 
was found to be positively associated with the develop-
ment of all-cause dementia including AD, even in females 
who received treatment at the age of 55 years or younger 
[51]. Nevertheless, the authors did acknowledge the need 
for additional research to ascertain whether these find-
ings represent an actual effect of HT on dementia risk, 
or if they signify an underlying susceptibility to demen-
tia among women requiring HT. On the AD biomarker 
level, HT has been found to be beneficial if introduced 
before a certain threshold of neuronal damage accumu-
lates, with potentially a critical window where HT can be 

Table 2 Hormone therapy interacts with cortical Aβ and is associated with lower regional tau-PET SUVRs 

Multivariate linear regression models were performed to understand how the interaction between Aβ and HT influenced regional tau load in the brain. 
The results showed that HT interacted with neocortical Aβ-PET and is associated with lower tau-PET in Braak ROIs. The findings remained significant after 
correcting for age, education, APOE ε4 carriage status and clinical diagnosis. Interaction plots are demonstrated on the right side of the table
Abbreviation: HT: hormone therapy; CU: cognitively unimpaired
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neuroprotective [11, 52]. In a study analyzing data from 
UK BIOBANK, despite showing that cumulative life-
time estrogen exposure was associated with increased 
brain aging, a subgroup analysis revealed that women 
who started HT earlier had less apparent brain aging 
compared to later starters. Importantly, this effect of HT 
timing was only evident in APOEε4 carriers [53], again 
raising the notion that interaction between APOEε4 and 
HT might have a significant effect on brain health later 
in life.

Limitation
This was a cross-sectional observational study preclud-
ing the establishment of a causal relationship. Data about 
the age of menopause, or if there was a gap between age 
at menopause and the start of HT is not available, which 
would allow further granularity in our analysis. A fur-
ther limitation is the small number of participants in the 
HT + group (10.4%, 98 out of 940 participants). It has 
been well documented that since the initial publication 
of WHI in 2002, HT use has decreased substantially [54, 
55]. A report published in 2012 showed that in 1999–
2000, the prevalence of oral HT use was 22.4% (95% con-
fidence interval [CI] 19.0-25.8) overall, 13.3% (95% CI 
11.0-15.5) for estrogen only, and 8.3% (95% CI 6.2–10.4) 
for estrogen plus progestin. A sharp decline in the use of 
all formulations occurred between 2003 and 2004, when 
the overall prevalence decreased to 11.9% (95% CI 9.6–
14.2). This decline was initially limited to non-Hispanic 
whites; use among non-Hispanic blacks and Hispanics 
did not decline substantially until 2005–2006. Hormone 
use continued to decline through 2009–2010 across all 
demographic groups, ending up at approximately 4.7% in 
2012 [56]. As TRIAD and ADNI cohorts were both initi-
ated after 2003, inevitably, the generational trends in HT 
post WHI are leading to the low HT + sample size. This 
relatively small number led to lower statistical power 
concerning the analyses performed in the HT + group 
compared to the HT- group, and also hindered the strati-
fication according to important variables such as APOEε4 
carriage status,  the age of HT initiation, the duration of 
HT, or the use of estrogen-only or combination HT for 
further investigation. Moreover, the types of estrogen in 
the HT formulation, the doses and frequency of HT use, 
and the route of administration were not investigated 
in this study either. Finally, the findings from this study 
should not be interpreted as recommending toward using 
HT as a therapeutical strategy against AD. We recog-
nize and emphasize the inherent limitations of investi-
gating observational data and we would like to highlight 
the importance of large randomized controlled trials 
designed to comprehensively study the influence of HT 
on AD biomarkers and disease progression to fortify the 
findings reported in this study. Additionally, alterations 

in specific AD biomarkers take place years before cog-
nitive decline becomes discernible. Therefore, for future 
clinical trials examining the impact of HT, it is essential 
to consider the concurrent investigation of both AD bio-
markers and cognitive symptoms.

Conclusion
Findings from the present study support the framework 
proposing that HT influences AD biomarker-informed 
tau pathology in post-menopausal females. Considering 
the tight connection between tau pathology and clinical 
symptoms, this study highlights the urgent need for new 
large randomized controlled trials designed to compre-
hensively study the influence of HT on AD biomarkers 
and disease progression in middle-aged females.
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